M DOCUMENT 169-04
(SUPPLEMENT)

&= Range
L 4 Commanders-
& Council LY

DATA REDUCTION AND COMPUTER
GROUP

COMMON RANGE ARCHITECTURE OBJECT MODEL
APPROVAL PROCESS INVESTIGATION

WHITE SANDS MISSILE RANGE
REAGAN TEST SITE
YUMA PROVING GROUND
DUGWAY PROVING GROUND
ABERDEEN TEST CENTER
NATIONAL TRAINING CENTER
ELECTRONIC PROVING GROUND

NAVAL AIR WARFARE CENTER WEAPONS DIVISION
NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION
NAVAL UNDERSEA WARFARE CENTER DIVISION, NEWPORT
PACIFIC MISSILE RANGE FACILITY
NAVAL UNDERSEA WARFARE CENTER DIVISION, KEYPORT

30TH SPACE WING

45TH SPACE WING
AIR FORCE FLIGHT TEST CENTER

AIR ARMAMENT CENTER
AIR WARFARE CENTER
ARNOLD ENGINEERING DEVELOPMENT CENTER
BARRY M. GOLDWATER RANGE

UTAH TEST AND TRAINING RANGE

NATIONAL NUCLEAR SECURITY ADMINISTRATION (NEVADA)

DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE
DISTRIBUTION IS UNLIMITED

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
NOV 2004 2. REPORT TYPE 00-06-2003 to 00-05-2004
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Common Range Ar chitecture Object Model Approval Process £b. GRANT NUMBER

Investigation (Supplement)
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER
DR-031

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Range Commanders Council, 1510 Headquarter s Avenue,White Sands REPORT NUMBER

Missile Range,NM 88002 169-04(s)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Provides detailed data management definitions and supporting technologies necessary to properly manage
the submission, review, and maintenance of proposed object models. Thisisa supplement to the 169-04
basic document.

15. SUBJECT TERMS
Data Reduction and Computer Group; object model; TENA; RCC 169-04

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18.NUMBER | 19a NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Same as 57
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

This page intentionally left blank.

DOCUMENT 169-04
(SUPPLEMENT)

COMMON RANGE ARCHITECTURE OBJECT MODEL
APPROVAL PROCESS INVESTIGATION

NOVEMBER 2004

Prepared by

DATA REDUCTION AND COMPUTER GROUP (DR&CG)
RANGE COMMANDERS COUNCIL

Published by

Secretariat
Range Commanders Council
U.S. Army White Sands Missile Range,
New Mexico 88002-5110

This page intentionally left blank.

TABLE OF CONTENTS

LIST OF APPENDIX FIGUREScoiiiiieie et iv
PREFACEottt bbb bbb e bbbt bbbt n et et bbb bt ne e %
ACRONYIMS .ottt et et e s b e e be e b e e st e st et et e sbesbeebeateeneaneeneeeenes vii
CHAPTER 1: EXECUTIVE SUMMARYocciitiiiiiiiieiese st 1-1
CHAPTER 2: DATA REDUCTION TASK DR-31 BREAKDOWN.........cccoeiiiiirieiiaiianns 2-1
2.1 The Need For An Object Model (OM) Standardization Process............cccceevevveiuennns 2-1
2.2 DR-31 Effort: Task 1 and Task 2 Defined.........cccceouriiiiiiiniiieseeeee e 2-1
CHAPTER 3: TASK 2: DEVELOP PROCESS TO STORE, REVIEW, MODIFY, AND
MANAGE OBJECT MODELS.......coccoiiieieeese et 3-3
3.1 Background and APPrOachccceeieiieiriie e 3-3
3.2 Technology BacKgroUNnd...........cocoiiiiiiiiiiie e 3-3
3.3 Deliverables FOr TaSK 2......ccciiiiiiiiiisieieiese et 3-15
3.4 Prototype On-Line OM SubmMisSION PrOCESSccccivirieiiriiiie e 3-17
APPENDIX A: METADATA FIELDS ..ot A-1
APPENDIX B: FOUNDATION INITIATIVE 2010 USE CASE TEMPLATES B-1
APPENDIX C: FI 2010 TENA USE CASE INSTRUCTIONS.......cccooiiiiiirineeeee, C-1
00 R [01 oo (1 T A o] o USSR URTRTRRN C-1
1.2 Use Case Template INSrUCTIONS.ccveiuiiiieiierieeie s e sae et sae e nee s C-2
APPENDIX D: EXAMPLE RADAR USE CASE.......cooi ittt D-1

Bibliography

Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.

Figure 3-10.
Figure 3-11.
Figure 3-12.
Figure 3-13.
Figure 3-14.
Figure 3-15.
Figure 3-16.
Figure 3-17.
Figure 3-18.
Figure 3-19.
Figure 3-20.
Figure 3-21.
Figure 3-22.
Figure 3-23.
Figure 3-24.
Figure 3-25.
Figure 3-26.
Figure 3-27.
Figure 3-28.
Figure 3-29.

Figure B-1.
Figure B-2.
Figure B-3.
Figure B-4.
Figure B-5.
Figure B-6.
Figure C-1.
Figure C-2.
Figure D-1.
Figure D-2:
Figure D-3.
Figure D-4.
Figure D-5.
Figure D-6.

LIST OF FIGURES

Use Case representation iN UML.cocveiiiiiiiiiiie st 3-7
Actor representation iN UML. ..o 3-7
Class diagram for the player ODJECL.cciii e e 3-8
INNEITTANCE. ..ottt bbb 3-9
ADSTFACTION. ... bbbttt 3-10
(070 010 To LY 1 A o] o USSR 3-10
SEQUENCE TIAGTAM. ...ttt bbbttt b b 3-11
DePIOYMENT QIAGIAM.ottt 3-12
The Developmental Test Command (DTC) integration level hierarchy....................... 3-13
TENA MELAMOUEL. ... 3-14
HLA metamodel based on the Object Model template.............ccocoveiiiiiiiiiniiiiiee 3-15
WEDSITE NOME PAGE. ...c.viiiiicie ettt sttt sbe e b e e sresreenes 3-18
WEDSITE TOGIN. ..t et be e b e sre e reenes 3-18
Object Model SUDMISSION.ooviiiiiiieiiisise e 3-19
Object Model submission - COMPIETEM.ccooviiriieieiei e 3-20
DRECG Chair [0gQIN. ...cueoiiiiiiie ettt st s re e 3-20
Review team created By Chail.cccoi i 3-21
Review team created by Chair - Completed.ccviiiiiieiie e 3-21
REVIEW tEAM TOGIN. 1.cvviiiciicii sttt sre b e b sre s 3-22
REVIEW T8AM COMMEBNT. ...ttt neene e 3-22
Review team comment — COMPIETE.ccuoiviiiiiiiiieee e 3-23
Working group creation by Chair. ... 3-24
Working group creation by Chair - completedcccooiiiiiinieieeeee e 3-24
WOrKING group [0QIN......ccuv i 3-25
WOTKING groUP CROICES. .. .vcvveieciecie ettt enes 3-25
WOrKing group COMMENTS.cuiiieierieeiesie ettt see st eesee e e besneeneeseeenes 3-26
Working group acceptance Of tOPIC.coeeiviieii it 3-27
Review Team monitoring WOrking group Status.............cceoerererenenenereeesese e 3-27
B O C O T g ToloT=] o] -V ol PR 3-28

LIST OF APPENDIX FIGURES

TENA Use Case basic infOrmation.coooviioriiiiieie e B-1
TENA Applications WOIKSNEEL.ooiiiiiiiee e B-2
EVENES WOIKSNEEL. ...ttt B-2
Information FIOW WOIKSNEEL.cooiiiieee e B-3
Object Model WOTKSNEEL.oiiiieiicieee sttt e B-3
Other Information WOrKSNEEL.oviiiiiiiiee e B-4
The Requirements Analysis Process for the TENA Middleware Prototype. C-1
Connectivity diagram eXampPle.coci oo C-4
Example radar Use Case (basic information).c.ccooevenerenenninisise s D-1
Example radar Use Case (TENA applications).........cccovvvirerenenciinininesiese s D-2
Example radar Use Case (basic course of eVENtS).c.cccecvveveieeiesie e D-2
Example radar Use Case (information flIows).........ccccooviiiiiiiiiiiic i D-2
Example radar Use Case (Object Model information)............cccccevvviieieiiviinecenecie e D-3
Example radar Use Case (other relevant information)............cccccoevvvveieniiieciese e D-4

PREFACE

The Range Commanders Council (RCC) Data Reduction and Computer Group (DR&CG)
sponsored the development and publication of this document. This document represents the
release of Task 2 of the DR&CG study effort DR-31, “Common Range Architecture Approval
Process Investigation.” The DR&CG developed this document as a supplement to Document
169-04 to provide the reader with detailed guidelines for developing Object Models (OM). The
goal is for consistency to be achieved in developing OM standards throughout the Department of
Defense (DoD).

The primary contributors to this report are shown below.

Author: Mr. Kurt Lessmann

Spring City Solutions, Inc.

106 Twin Island Circle

Madison, AL 35758

E-mail: klessmann@springcitysolutions.com

Mr. David Browning

Data Reduction And Computer Group (DR&CG), Associate Member
Representing: Redstone Technical Test Center (CSTE-DTC-RT-F-FL)
Redstone Arsenal, AL 35898-8052

E-Mail: dbrowning@rttc.army.mil

Address questions about this document to the RCC Secretariat.

Secretariat, Range Commanders Council

ATTN: TEDT-WS-RCC

1510 Headquarters Avenue

White Sands Missile Range, New Mexico 88002-5110
Telephone: (575) 678-1107, DSN 258-1107

E-mail usarmy.wsmr.atec.list.rcc@mail.mil

mailto:klessmann@springcitysolutions.com
mailto:dbrowning@rttc.army.mil
mailto:usarmy.wsmr.atec.list.rcc@mail.mil

This page intentionally left blank.

Vi

ABBREVIATIONS

C++

C

COTS
CRAC
CTEIP
DAT
DR&CG
DoD
DR-31
DTC
F12010
FIPMO
ILH
JPEG
oM
OMG
00
OOP
oS
POC
RCC
SDO
TENA
UML
XMI
XML

ACRONYMS

TERMS

An Object Oriented computer-programming language based on the
C language

A powerful and flexible computer programming language that can
be used for a variety of applications, from business to engineering
programs.

Commercial off the shelf

Common Range Architecture Committee

Central Test and Evaluation Investment Program

Development Advisory Team

Data Reduction and Computer Group

Department of Defense

Identifies Data Reduction and Computer Group Task Number 31
Developmental Test Command (DTC)

Foundation Initiative 2010

Foundation Initiative 2010 Project Management Office
Integration Level Hierarchy

Joint Photographic Experts Group

Object Model

Object Management Group

Object Oriented

Object Oriented Programming

Operating System

Point of Contact

Range Commanders Council

Stateful distributed object

Test and Training Enabling Architecture

Unified Modeling Language

XML Metadata Interchange

Extensible Markup Language

vii

This page intentionally left blank.

viii

CHAPTER 1
EXECUTIVE SUMMARY

The charter for the Range Commanders Council (RCC) Data Reduction and Computer
Group (DR&CG), Common Range Architecture Committee (CRAC), includes the evaluation of
proposed RCC architectural standards as well as the configuration management and distribution
of candidate and accepted standards.

The Central Test and Evaluation Investment Program (CTEIP) Foundation Initiative 2010
(F12010) project has developed the Test and Training Enabling Architecture (TENA) to support
test and training range interoperability. As part of the TENA objective, the FI2010 project will
be offering proposed architectural standards to the RCC for ratification and management. The
first offering from the project will be the common Object Models (OM) being produced and
utilized within the TENA architecture. A pathfinder project was established to articulate the
issues, provide a process for Object Model standardization, and prepare a guideline for
standardization. This pathfinder project is known as the RCC task DR-31 effort, “Common
Range Architecture Object Model Approval Process Investigation.”

This document defines the detailed process that the DR&CG will use to store, review,
modify, and manage the Object Models as they progress through the standardization process
defined in Task 1. This document addresses Task 2, which was established to provide the
detailed data management definitions and supporting technologies necessary to properly manage
the submission, review and maintenance of proposed Object Models.

This documents presents the findings of Spring City Solutions, Inc in support of DR-31
Task 2 with the following subtasks:

a. Develop draft formats that should be used for Object Model submission to the RCC.

b. Develop draft formats for the distributed and archived Object Models.

c. Develop draft process by which Object Models are submitted, updated, distributed,
reviewed, modified, and archived.

The deliverable information for subtask a and subtask b is found: Chapter 3,
paragraph 3.2, and paragraph 3.3. Subtask ¢ deliverable information is found in Chapter 3,

paragraph 3.4.

1-1

This page intentionally left blank.

1-2

CHAPTER 2
DATA REDUCTION TASK DR-31 BREAKDOWN

2.1 The Need For An Object Model (OM) Standardization Process

There are currently many activities that strive to enable interoperability between ranges
and range resources. Therefore, a significant portion of these activities support the
standardization of the data passed between the ranges. In addition, the architectures developed to
support range interoperability, such as the Test and Training Enabling Architecture (TENA),
have adopted an Object Oriented (OO) approach. When OO based software is used in
conjunction with data standardization, a notion of Object Model (OM) is presented. An OM is
the interface to a given system that describes its data and functional capabilities. In other words,
it’s the “contract” that must be enforced to support interoperability. The RCC task DR-31,
Common Range Architecture Object Model Approval Process Investigation, was initiated to
address concerns regarding the process required to standardize proposed Object Models.

2.2 DR-31 Effort: Task 1 and Task 2 Defined
The DR-31 effort was established to support two main tasks:

a. Task 1 - Develop the initial high-level notional process by which the RCC in general,
and the DR&CG in particular, should standardize Object Models.

b. Task 2 - Develop the high-level notional process that the RCC could store, review,
modify, and manage the Object Models as they progress through the standardization process
defined in Task 1.

2.2.1 Task 1 Deliverables. For Task 1, the primary process deliverables are in shown in
Chapter 3 of Document 169-04, Common Range Architecture Object Model Approval Process
Investigation. The primary deliverables include guidelines as to when a candidate OM should be
reviewed, a draft process for review by Object Model experts, and a draft process for revision
and final approval of candidate Object Models. Additional deliverables include tutorial and
training materials on software architectures and Object Oriented concepts.

2.2.2 Task 2 Deliverables. As Task 1 was established to define an over-arching OM
submission process, Task 2 was established to provide the detailed data management definitions
and supporting technologies necessary to properly manage the submission, review, and
maintenance of proposed OMs. The deliverables as set forth by DR-31 Task 2 are contained in
the remaining portions of this document, including:

a. Draft formats that should be used for OM submission to the RCC groups

b. Draft formats for the distributed and archived Object Models

c. Draft process by which Object Models are submitted, updated, distributed, reviewed,
modified and archived

2-1

This page intentionally left blank.

2-2

CHAPTER 3

TASK 2: DEVELOP PROCESS TO STORE, REVIEW, MODIFY, AND MANAGE
OBJECT MODELS

3.1 Background and Approach
The deliverable items of the DR-31 effort were outlined in paragraph 2.2.2 above. This

chapter documents the findings of Spring City Solutions, Inc., in support of DR-31, Task 2. The
following three sections provide the information necessary to fulfill the deliverables of Task 2.

a. Paragraph 3.2 defines terms and technologies required to discuss the requirements
and proposed solution.

b. Paragraph 3.3 presents the deliverables for Task 2.

c. Paragraph 3.4 presents an example implementation of the process as defined in the
DR-31 Task 1 and the formats/process as defined in DR-31 Task 2.

3.2 Technology Background

As with any technology-based area of interest, there often is an underlying level of
confusion on the terminology used to define the technology. Therefore, several terms will be
defined in the following sections to present a baseline of definitions. This information baseline
will enable a common understanding of terms, and thereby provide a common understanding of
the technology.

3.2.1 Obiject Oriented Programming (OOP). Fundamentally, the use of OOP combines both
the data and the functions that operate on that data into a single unit, called an object. In many
cases the term behavior is interchangeable with the concept of object functions that operate on
the data. As a general rule, objects are defined when the software program must represent both
data and behavior of something in the real world.

An Object Oriented (OO) program is basically a collection of objects that interact with
each other to provide a function or capability. To illustrate this concept, let’s consider a program
that represents a baseball team. For the program to represent a real baseball team, at a minimum
there needs to be representations of the players on the baseball team. These representations are
called objects, that have been named “Player,” and each Player object has data and behavior.

The data stored within an object are referred to as attributes in OOP terminology. In our
Player objects, they would need attributes that represent the real-life player attributes. Potential
attributes defined for the Player object might be position, battingAverage, onBasePercentage,
number, and other characteristics of the actual player.

The behavior of an object is the functionality that the object represents. In OOP
terminology, the object behavior is represented by “methods.” A method may be invoked, or
executed, by other objects by providing the data that the method needs to execute the method.
This data being passed to the method are called parameters. If the method passes data back after
executing the method, the type of data being returned must be specified and is called the return

3-3

type. In the Player example, a method would be StealBase, the parameter would be baseNumber,
and the return type would be Boolean for true or false.

Another OOP term that needs to be addressed is class. A class is a template, or blueprint,
of an object. A good way to describe the concept is by using the construction of a building as an
analogy. Before a general contractor starts construction on a building, he needs a set of
blueprints to construct the building so that it meets the dimensions and behavior of the owners.
Likewise, the software developer needs a set of plans before an object can be created in a
program. The class definitions come together to form the required set of plans. Therefore, a
class is to a software developer as a blueprint is to a general contractor.

Inheritance is an OOP term that represents the ability of a class to reuse or inherit the
attributes and methods of another class. This inheritance allows a developer to create a brand
new type of class that is more specialized than the “base” class. For example, since all baseball
players have the common characteristic of being human; we could therefore create a super class
called “Human” with attributes like age, weight, sex and methods like run, walk, and sit. The
sub-class Player could inherit from Human and thereby contain all the attributes and methods
found in the Human class. The Player sub-class would have all the attributes needed to
characterize a particular human as a baseball player. This type of relationship is an “IS-A”
relationship (the Player is a Human). An “IS-A” relationship, or inheritance, signifies a very
tight coupling meaning that the player MUST BE a Human.

Abstraction is a very powerful concept that allows additional sub-classes to be added
quite easily. For instance, say you wanted to add “Coach” class as a sub-class to the super class
Human. The Coach class would inherit all the elements of Human, but the Coach class would
have additional attributes and methods that the Human and Player classes do not have. For
example the Coach class could have a method called “sendStealBaseSignal” with a return type of
void.

Interestingly, the class designer now must decide if the class Coach should be a sub-class
to Human or a sub-class to Player, because both could be true. This example situation is raised
to emphasize two points:

a. Abstraction is multi-level.
b. Although a person grasps OO concepts, he may or may not be able to design a good
OO system

Composition refers to one object containing additional object(s). For example, a Player
object may have a Uniform, Glove, and Bat objects. This type of relationship is called a “HAS-
A” relationship because the Player HAS-A Glove, Bat and Uniform. But the Player may exist
without the composed objects Glove, Bat, and Uniform.

While it is beyond the scope of this document to fully explain OOP terminology and

skills, the previous sections provide the reader with enough background material to understand
the necessary concepts.

3-4

3.2.2 Object Model definition. While the previous section provided the basics of OOP, the
term “Object Model” was never mentioned. The term Object Model is actually somewhat of a
misnomer that has been used for several years within the modeling and simulation (M&S)
community. Unfortunately, it has been adopted as a pseudo-standard definition within the
community. To adopt OOP terminology, an OM is the class definition(s) of a particular software
program. The OM defines the data and behavior of a particular object in question and thereby
making it a “contract” to allow communication with an external system.

The term “object,” as mentioned before, is defined in Object Oriented terminology as an
instance of a class. Before an instance of the class in a software application can be created, the
software developer needs to understand how the class is defined. The developer takes the
definition of class and creates an object based on that class. The newly defined object then
supports the data and behavior as defined by the class definition.

The term “model,” can have different meanings to different people. If several people are
asked what the term “model” means to them, the responses may be like the following:

a. A plastic toy that is put together with plastic glue.

b. A 3-Dimentional synthetic representation of a live entity that is used in real-time
graphics.

c. A simple software algorithm.

Note: In OOP constructs, a model is used to designate a diagram, template, or layout.

In the above paragraphs, the term “class” was used to refer to a template, or definition, of
the object to be instantiated (i.e. created) and the term “model” was used to refer to a diagram.
With OO terminology, a more accurate term for “Object Model,” should really be “class
diagram.” For the remainder of this document, the term “Object Model” should be thought of as
a class diagram. The following paragraphs describe standard methodologies and techniques for
defining and presenting OMs.

3.2.3 Representing Object Oriented systems. When the author of a C++ textbook from 10
years ago presented new OOP definitions and techniques, he often used C++ syntax to represent
things like classes, methods, and attributes. The new user found the syntax difficult to use
because the author was using C++ before the user knew C++. To counteract this difficulty, some
authors developed a custom set of graphical “boxes” to represent classes and a set of arrows to
represent relationships between the classes.

As OOP has become the accepted software design and development paradigm, several
organizations have been working very diligently to formalize the process to describe, design, and
develop software systems. For example, the Object Management Group (OMG) has been
recognized as the world-leading organization that manages standards for interoperability between
applications. From the OMG website, the OMG describes itself as “.... an open membership,
not-for-profit consortium that produces and maintains computer industry specifications for
interoperable enterprise applications. Our membership includes virtually every large company in

3-5

the computer industry, and hundreds of smaller ones. Most of the companies that shape
enterprise and Internet computing today are represented on our Board of Directors.”

One of the technologies the OMG has standardized is called the Unified Modeling
Language (UML). The UML is a defined process that allows software developers and system
architects to visualize, specify, construct, and document software systems. The UML is very
well defined and documented with a formal specification of the “language,” or process. This
powerful concept enables a standardized process for developing:

a. Diagrams that describe Object Oriented (OO) information such as class and object
diagrams. These diagrams illustrate the static structure and relationship between
objects in a system.

b. Interaction and activity diagrams to convey the dynamic behavior of objects in the
system. The diagrams may also convey messages between the objects based on
certain events or happenings.

c. Use Case diagrams to ensure user/customer requirements are well documented and
well understood by the system development team.

d. Deployment diagrams to present the use of the software in a particular environment.

While the OMG doesn’t produce UML modeling tools, it does produce, standardize, and
manage the UML specifications. These specifications are supported by Commercial Off The
Shelf (COTS) UML tool developers like IBM Rational, Borland, No Magic, and Objecteering.
Due to the varying degrees of adoption and implementation of the UML standards, data
interchange problems sometimes exist between UML modeling tools.

Because there is now a technology called UML, the question arises as to how the UML
technology should be used for standard OM submissions and definitions. UML uses a notation
of Views and Diagrams to represent the system being modeled. Because there are several
different UML views and many different UML diagrams, the following paragraphs address how
several proposed UML diagrams should be used to not only define the proposed OM, but also to
present the information regarding the definition of the OM.

3.24 UML diagrams. The features inherent in UML make it very powerful by allowing
customers, managers, and software developers to collaborate on a design and document all
aspects of the software system in a standardized way. UML diagrams have been conceived to
enable information flow by presenting views in class, object, Use Case, state machine, sequence,
communication, timing, interaction overview, activity, component and deployment diagrams. In
the following sections, this report will focus on the following four critical UML diagrams needed
to ensure that OMs are generated and presented in a standard acceptable definition.

a. Use Case diagrams - Provides a graphical representation of the functionality needed.

b. Class diagrams - Provides a graphical representation of the OM.

c. Sequence diagrams - Provides an understanding of the sequence of events and the
data flow between objects.

d. Deployment diagrams - Provides a graphical representation of the physical
configuration of the hardware.

3-6

3.2.4.1 Use Case diagrams. A Use Case diagram can be thought of as a package of information,
typically presented in multiple diagrams, which describes what a system does, or should do, to
benefit the stakeholder. The stakeholder can be thought of as the customer, the user, or the
benefactor, of the software system being developed. The Use Case diagrams focus the
overwhelming amount of reference data into a refined, concise information package that
represents the intended functionality of the software system. This Use Case information is then
utilized for discussions between the stakeholder, the software developer, and the system architect
to define the requirements of the desired software system so that all understand and agree.

A Use Case model defined in UML notation is described by a number of Use Case
diagrams. The Use Case diagrams contain model elements for the system, the actors, and the
Use Cases and also depict relationships between the elements. The potentially confusing aspect
here is that a Use Case defining a system will probably contain several “smaller” Use Cases. In
UML, a Use Case is defined using an ellipsoid (see Figure 3-1) and contains a title that defines
the activity/requirement of the Use Case. For instance a Use Case may be called “Batting
Practice” that is a component of a “Baseball” Use Case.

Figure 3-1. Use Case representation in UML.

An “actor” is defined in UML as a “role” or a classifier in the Use Case. The name of the
actor portrays the role that the actor represents. Each actor must have some role, or association,
with at least one Use Case. If there is an actor without an association to a Use Case, then that
actor is no longer needed. An actor always initiates Use Cases and Use Cases always provide
value to the actor. The “stickman” diagram in Figure 3-2 represents an actor.

()

Baseball player

Figure 3-2. Actor representation in UML.

3-7

A description of the Use Case is provided in text, and is a simple explanation regarding:

The objective of the Use Case.

How the Use Case and the actors interact.

How the Use Case is initiated.

Message traffic between the actor(s) and the Use Case.
Value to the actor.

The exit criteria of the Use Case.

mP Qo0 o

3.2.4.2 Class diagrams. As the name implies, UML is a modeling language complete with
rules, notations, and diagrams. UML provides the user a methodology to represent the design of
the system and also to design a software system. As mentioned previously, an Object Model is
equal to that of a Class Diagram in UML notation. Unfortunately, presenting the entire UML
class diagram notation tutorial is beyond the scope of this effort. However, the following
sections will provide the requirements for understanding UML class diagram notation based on
the Player example.

In UML, a class diagram is basically a rectangle with three horizontal lines separating the
rectangle into three areas. Each area in the rectangle represents the three distinct parts of a class:
the class name, attributes, and methods. The components of Figure 3-3 are as follows:

a. Class Name - Top section contains the class name, “Player”

b. Attributes - The second section contains the attributes and their associated data types
such as attribute “position” and data type “short.”

c. Methods - The third section contains the methods to include the arguments and return
types such as method name “stealBase”, with argument “baseNumber”, data type
“short”, and type of return method “Boolean”.

Player

+hattingAverage : douhble
+paosition ; short
+onBaseFercentage : double
Attributes +number ; int

+stealBase(haseMumber: short) : hoolean

Class Mame

Iethods

Figure 3-3. Class diagram for the Player object.

3-8

To define inheritance, a line is drawn from the sub-class to a super class with an open
triangle towards the super class. Figure 3-4 represents inheritance.

Human

+age ;int
+height : double
+name : char
+weight : double

Inheritance

Player

+hattingAverage ; double
+position ; short
+onBaseFPercentage : double
+number :int

+stealBasel haseMumber: short) : hoolean

Figure 3-4. Inheritance.

Abstraction is defined as a relationship between two descriptions of the same thing.
Figure 3-5 graphically depicts this concept as both the Coach and Player are of type Human;
therefore, a coach “I1S-A” Human. Figure 3-6 denotes the composition by having the closed
diamond on the class that contains the other class. It follows that Figure 3-6 depicts a Player
class containing Bat, Glove, and Uniform classes, and a coach HAS-A uniform.

3-9

Human

+age :int
+height : double
+name : char
+weight : double

T

T

Player

Coach

+hattingAverage : double
+position : short
+onBasePercentage : double
+number :int

+stealBase(baseMumber : short) : hoolean

+sendstealSignal() : void

Figure 3-5. Abstraction.

Human

+age :int
+height : douhle
+name : char
+weight : douhle

T

Player

+hattingAverage : double
+position : short
+onBasePercentage : double
+number : int

+stealBase(baseMumber : short) : boolean

+length : float +color: char
+weight : float

T

Coach

+sendStealSignal() : void

I I

+color: char
+size : float

Composition

Figure 3-6. Composition.

3-10

3.2.4.3 Sequence diagrams. A sequence diagram is an interaction diagram that depicts
information flow between software objects, or instance of a class, in a sequenced manner. The
information sent between objects is referred to as messages and are depicted by straight lines
with arrows to denote direction of message flow. The interaction(s) between objects is shown as
a discrete event during the execution of the system. The diagram is configured such that the
objects are listed on the top row with vertical lines drawn to the bottom of the diagram under
each object. The vertical lines are sometime referred to as lifelines as the execution time
progresses from the top to the bottom of the diagram. To summarize, the sequence diagram is a
dynamic collaboration diagram that represents the information flow between objects in a
sequenced manner. Figure 3-7 is a simple sequence diagram.

Coach Player

i 1: stealBase

2:Ture i False

i

Figure 3-7. Sequence diagram.

3.2.4.4 Deployment diagrams. A deployment diagram represents the configuration of the
system’s hardware and software components, which are referred to as nodes. This type of
diagram contains the connections between the nodes and a description of the connections. The
deployment diagram is diagram is useful in presenting the envisioned system configuration and
is helpful in understanding potential constraints levied on the system developers. Figure 3-8 is a
simple deployment diagram.

3-11

CoachClient
10-T Ethernet, HLA

ObjectServer
100-T Ethernet

Repository

. 10-T Ethernet, TEMA
PlayerClient

Figure 3-8. Deployment diagram.

3.2.5 Object Model metadata. Metadata is data that is associated with an OM that puts the OM
definition into context. Examples of OM metadata could be:

OM Name - XYZradar

Point of contact information - Mr. John Doe with phone, email, organization, and
other information

Use Case Name - Range XYZ radar utilization

Range resource represented - XY Z radar system

Fidelity of the application - low, medium, or high

Purpose of OM - to develop an interface to XYZ radar for other ranges to utilize XYZ
radar

oo

D oo

Figure 3-9 depicts the Developmental Test Command (DTC) Integrated Level Hierarchy
(ILH) that has been standardized as the metadata for the Virtual Proving Ground (VPG)
program. The ILH was developed at the Redstone Technical Test Center (RTTC) and is
currently the standard data representation schema used at DTC ranges. While this extensive
schema is not necessary for our metadata definition, it is presented here to reinforce the
importance of maintaining a consistent set of information that describes the asset in question.

3-12

Integration Level Hierarchy
Physical Model
Version 2.2 September 2003

Below the Line Databases

Figure 3-9. The Developmental Test Command (DTC) integration level hierarchy.

3.2.6 Object Model metamodel. A metamodel is a “model that defines a model” and can be
considered OM metadata. While this definition may seem to be trivial and almost useless, it is in
fact very significant to OM discussions. Another way of defining metamodel is by stating that a
metamodel describes the capability of another model. The following are examples of
metamodels in use.

a. C++ metamodel - Classes, structs, multiple inheritance, composition, generics,
functions, methods, operators, fundamental data types, exceptions, etc.

b. Java metamodel - Classes, Interfaces, and exceptions. Doesn’t support structs,
functions, generics or multiple inheritance

c. Common Object Request Broker Architecture (CORBA) metamodel - Interfaces,
structs, valuetypes, sequences, enumerations, and so forth (doesn’t support classes).

3-13

d. High Level Architecture (HLA) metamodel - Classes (as objects), interactions,
attributes, single inheritance. Doesn’t support interfaces, composition, functions,
methods, etc.

One example of a metamodel is the Test and Training Enabling Architecture (TENA)
metamodel. The TENA metamodel (see Figure 3-10 directly below) will support classes, local
classes, inheritance, composition, interfaces, messages, and other architectural elements.
Another metamodel, the HLA, is depicted in Figure 3-11.

e TEMBERMEnt = — — — & o L e e e e e e e = o _

Operation | Parameter. refumvaiue " p——
"1 [Cocal methods® | Fundamental Types
| " ‘ short

==TEMA Elamarl==

I

! 1

1 | :

_______ [| ==TENA Eleme e | = | * unsigned short]

[v ! Local Class (&= | fong .
) |

I
: A8 S0 unsigned long '
. Message . | 1] = . !Iung!nng .
I 0. 10% ¥ ? .y unsigned lang long ;
I | * I<<TENAElements= fioal
' *_[Enumeration| |double !
1
I

- char .
H l b boolean |
L1 L) nde‘- !

<~ TEMA Elzmants» ~ - TERA Elemgnt==

| Class | Vector string
Y RO woid() '
; 1 |

O _JeTEMAEement-l. . _ _ _ _ _ _ _ _ _ _ _ _ _ _{ ____ _ 1
I .
L refers to SDO Pointer

Figure 3-10. TENA metamodel.

3-14

«HLA Elameants a«HLA Elements
Object Interaction
L‘Hﬂi u..1ﬁl
wHLA Elements

1.* Attribute 9 *

!

wC++ Elements
Name-Value Pair 1

wC++ Elements
Memory Block

P Y

+name : unsigned long
+value - void * value

Figure 3-11. HLA metamodel based on the Object Model template.

The reason the metamodel definition is critical is that the metamodel lists all the features
of the over-arching system or architecture that the software was designed to use. For example, if
an OM had been developed using the HLA metamodel, the OM would never contain the element
SDO Pointer because the HLA doesn’t utilize the concept of SDO Pointer. It is very important
for the RCC to understand the impact of metamodels on OM definitions. We need to ensure that
the OM being developed is compatible with the specific architecture metamodel(s) in which the
OM will be used. The Range Commanders Council must appreciate the potential conflicts with
other OMs designed with a different metamodel and therefore should adopt acceptable
metamodel(s) and require OM submissions to follow them.

3.3 Deliverables For Task 2

3.3.1 Proposed OM submission package format. When a user submits an OM to the RCC
DR&CG as a potential candidate for standardization, the submission needs to be presented in a
package. A package contains several items and is required to give the DR&CG a complete set of
information regarding the OM submission. Before an OM is accepted into the OM
standardization process, the entire package must be completed. The OM submission package
must contain:

a. The OM metadata - The metadata fields and structure must be provided to put the
OM definition and submission into context.

b. The OM - The OM must be graphically depicted using UML notation as a standard
class diagram.

3-15

c. Use Case - While in UML a Use Case is only one of many diagrams, a Use Case is
referred to herein as several UML diagrams. A Use Case is either a UML-based Use
Case model or the FI12010 Use Case template. Note: If UML diagrams are used, the
Use Case, sequence, and deployment diagrams are required.

d. Metamodel - A graphical or textual representation of the metamodel used during the
OM definition.

Unless otherwise specified, the OM and Use Case diagrams shall be presented in the
UML Standard XML* Metadata Interchange (XMI) 1.0 Format. This format allows for diagram
interchange between various UML tool programs. As standards evolve, it is recommended that
the DR&CG adjust this requirement to meet new standard definitions. In addition, the JPEG
format is required for quick-look capability

The OM submission package may either be presented via e-mail to an address
designated by the DR&CG or via a DR&CG-supported on-line submission process.

Spring City Solutions, Inc. has implemented a prototype of the OM review process as
defined by DR-31 Task 1 that includes the OM package submission process. This
implementation demonstrates the feasibility of the OM standardization process as defined by the
DR-31 Task 1 and 2 deliverables. An example of this prototype on-line OM submission and
management process is presented in paragraph 3-4 below.

3.3.1.1 Metadata. The metadata shall be filled in via the DR&CG-sponsored on-line submission
process or filled in and submitted via Microsoft Word Format. Metadata fields are defined in

Appendix A.

3.3.1.2 Object Model. The submitter shall provide the OM in JPEG and XMI format. While
the JPEG format supports a quick-look analysis, the XMI format allows the DR&CG personnel
to import the diagrams into their UML tool for more extensive investigation.

3.3.1.3 Use Cases. The OMG clearly and consistently defines the process, tools, components,
and diagrams to generate a system using UML. Therefore, a UML-based Use Case diagram, and
other supporting UML diagrams, should be acceptable as input for an OM submissions in the
XMI format. The minimum required UML diagrams for each use OM submission include:

a. Use Case diagrams.
b. Sequence diagrams.
c. Deployment diagrams.

Additional diagrams that may be included in the Use Case, but are not required, are:
d. Collaboration diagrams

e. State diagrams
f. Implementation diagrams

! Extensible Markup Language
3-16

However, many in the RCC community are either unaware or unable to spend the time
to fully embrace and implement the Use Case definition process. Therefore the pure UML
definition of the Use Case development process should not be the lone Use Case submission
format for OM submission to the RCC DR&CG standardization. A range-specific Use Case
format generated by the Foundation Initiative 2010 project should also be endorsed as a
submission format as it better reflects the range community terminology, process, and
communication constructs.

Additional guidance is contained in the appendices as follows:

Appendix B - FI2010 Use Case Templates
Appendix C - FI2010 Use Case Instructions
Appendix D - Example Use Case: Radar (hypothetical scenario)

3.3.1.4 Meta-model. As defined earlier, the metamodel is the model that describes the model of
the architecture, like TENA, or the single language the system was written in, like C++.
Therefore the user must, at a minimum, state the metamodel being used, but preferable provide a
graphical representation of the metamodel in JPEG format.

3.4 Prototype On-Line OM Submission Process

As an unfunded feature, Spring City Solutions, Inc. developed an on-line OM submission
and management tool suite to provide the feasibility of the process and submission formats
defined in DR-31. While this tool is only a prototype, it demonstrates the concept of managing
OM submissions, further development of this working prototype is possible if the DR&CG
wishes to pursue this activity. A sample of the prototype system user screens can be seen at
Figures 3-12 through Figure 3-29.

Figure 3-12. Website home page

Figure 3-13. Website login

Figure 3-14. OM submission

Figure 3-15. OM submission - completed

Figure 3-16. DR&CG Chair login

Figure 3-17. Review Team created by Chair

Figure 3-18. Review Team created by Chair - completed
Figure 3-19. Review Team login

Figure 3-20. Review Team comment

Figure 3-21. Review Team comment - completed

Figure 3-22. Working Group creation by Chair

Figure 3-23. Working Group creation by Chair — completed
Figure 3-24. Working Group login

Figure 3-25. Working Group choices

Figure 3-26. Working Group comments

Figure 3-27. Working Group acceptance of topic

Figure 3-28. Review Team monitoring working group status
Figure 3-29. DR&CG Chair acceptance

3-17

Welcome to the RCC Object Model Standardization Proposal Process!

= Ifyou wish to submit an Object Model package for review, you may login here
=+ To access the DRECG chair page, you may login here

= [fyou are part of a Review Team, you may login to the Review Team page here
=

IFyou are part of a Working Group, you may login to the Working Group page here

AW Range
AW Comman
AW Council

Figure 3-12. Website home page.

Please login to use this website

| - < Email Address
| < Pasgword

Lot |

Figure 3-13. Website login.

3-18

RCC Object Model Standardization Proposal Process
SUBMIT OM

Step 1: Object Model Package Submission

1) Object Model Name: | Radar

2) Please attach a zip file containing the files associated with this Object Model

| C:ADocuments and Settings =~ Browse |

3) Insert Metadata for this OM Submission Package

Name:
| Kurt Lessman

Organization:
| FI2010

Mail Stop:
| 500 Wynn Dr Suite 314 Huntsville, AL 35816

Phone Number
| 256-722-7200

Fax Number:
| 256-722-7212

Email Address:

| klessmann@springcitysolutions.com

Object Model File Name(s):
| Radar

Range Object(s) Defined:
| Radar

Meta-model OM Designed to Support
| ENA Release 4.0

Object Names Submitted for Standardization:
| Radar

Purpose of OM:
| Standardize Radar

Submit OM Package

Figure 3-14. Object Model submission.

3-19

Object Model Submitted to the RCC Chair for processing!

>> Object Model Name: Radar
>> Package File Renamed to: Radar-TENA_Radar.zip

Figure 3-15. Object Model submission - completed.

DR&CG Chair Creates Review Team
Welcome DRAECG Chair!
As the DRECG Chair, you may:

© Create a Review Team for an Object Model below;

|

= Accept or Deny an Object Model Submission below:

IRadari’f.*S > IAccept;:\jl » Process

= Wiew a status list of all submitted Ohject Models

OM NAME OM status
GPS_0Om + REVIEW TEAM
Radar + PROPOSED

widget =+ REVIEW TEAM

Figure 3-16. DR&CG Chair login.

3-20

DR&CG Chair Creates Review Team

welcome DRECG Chair!
== Wiew 3 status list of all submitted Object Models

You may now subscribe members to the Review Team for Radar

[Chair, DRECG =] » _ Add To Revie |

Currently subscribed review team members:

= Cox, Seth <Unsubscribes
= Lessmann, Kurt <Unsubscribe=

= When you have finished subscribing Users, you can create the review team by clicking the button below. .

Figure 3-17. Review Team created by Chair.

DR&CG Chair Creates Review Team

Welcome DRECE Chairl
= Yiew 3@ status list of all submitted Object Models

Review team has been created for this object model!

Follow these login instructions to access the Review Tearn area;
+ G0 to reviewTearm. php
+ Enter your ermail address and choose the Object Model you wish to review (note: you must have a subscribed email address to

access any particular Object Model)

Figure 3-18. Review Team created by Chair - Completed.

3-21

RCC Object Model Standardization Proposal Process

REVIEW TEAM

Review Team Accept/Deny or Request Revisions
Welcome to the Review Team access page

If you are subscribed as a Review Teamn member for an Object Model, you may access that OM by entering the subscribed emai
address along with choosing the Ohd you wish to review

Subscribed email address:
[Klessmann@springcitysolutio

Ohject Model:
IRadar vl - Access Ohject Model for Review

Figure 3-109. Review Team login.

RCC Object Model Standardization Proposal Process

REVIEW TEAM

Review Team May Accept'Deny Object Model or Request Revisions
YWelcame to the Review Tearmn access page.
You are currently working with the Proposed Object Model Radar

Please review the documents contained in the Ohject Model package. You may then decide to Accept or Deny this proposal ar
create a Standard Proposal Warking Group to consider a revision.

(right-click to download Object Model package)
-+ Radar-TENA_Radar zip

You may:
» Accept this proposal and send back to DRECG Chair for processing
» Deny this proposal and send back to DRECG Chair for removal
» Create A Standard Proposal Working Group For Revision

Mo working groups have been defined yet.

Add comment to this Object Model Proposal;
I think this iz a wonderful design! :_!

Submit Comment

Figure 3-20. Review Team comment.

3-22

RCC Object Model Standardization Proposal Process

REVIEW TEAM

Review Team May Accept/Deny Object Model or Request Revisions
Welcome to the Review Team access page.
You are currently working with the Proposed Object Model Radar

Flease review the documents contained in the Object Model package. You may then decide to Accept or Deny this proposal or
create a Standard Proposal Working Group to consider a revision.

(right-click to download Object Model package)
= Radar-TENA_Radar zip

YOU nay:

» Accept this proposal and send back to DRE&CS Chair for processing
» Derny this proposal and send hack to DRECG Chair for remaoval
» Create A Standard Proposal Working Group For Revision

Mo working groups have been defined yet.

Add comment to this Object Model Proposal;

Submit Comment

Comments submitted for this Object Model:

Comment submitted by Kurt Lessmann on April 16tk 2004, 3 14pm
| think this is a wonderful design!

Figure 3-21. Review Team comment — completed.

3-23

YOU are currently working with the Proposed Object Model Radar

For updates and changes to this Ohject Model submission, you may create warking groups to review the changes.

Please enter a short description of the function for this Working Group:
[Review Antenna Class

Please enter the details for this Warking Group submission:
Should aperture be contained in this class?)gﬁi

Figure 3-22. Working group creation by Chair.

A working group has been created for this object model!

Follow these login instructions to access the Working Group area:
= 50 to workingGroup.php

Figure 3-23. Working Group creation by Chair - completed

3-24

Yelcome to the Object Model Working Group access page

If you are subscribed as a Waorking Group member for an Object Model, vou may access that group by entering wour subscribed
email address helow. You will then be shown your subscriptions to choose fram.

Subscribed email address:

Figure 3-24. Working Group login.

Welcome to the Object Model Working Group access page

¥ou are subscribed to these Object Model Working Groups. You may select any of these to enter the Working Group area for that
Ohbject Model.

Description Associated Object Model
Review Wiget atttribute "stuff Widget
Review Antenna Class Radar

Figure 3-25. Working Group choices.

3-25

RCC Object Model Standardization Proposal Process

WORKING GROUP

Working Group May Make Comments, Accept, Deny or Modify The Revision Request
Welcome to the Review Team access page.

¥ou are currently working with the Proposed Object Model Radar

(right-click to download Object Model package)
=+ Radar-TENA_Radar zip

You may:

» Accept this proposal and send back to Review Team for processing
» Deny this proposal and send back to Review Team far removal

Below is the described function of this Working Group:

Should aperture be contained in this class?

Add comment to this Working Group:

Submit Comment

Comments submitted for this Working Group:

Comment submiffed by Sefh Cox on April 16th, 2004, 3:24pm
Based on my experience, aperture is needed.

Camment subraitted by Kurt Lessmann on April 16tR, 2004, 3 24pm
¥es, | agree - [et's go with it.

Figure 3-26. Working Group comments.

3-26

>Radar-Tena_Radar.zip

You may:
>> Accept this proposal and send back to Review Team for processing

| You have accepted this Working Group proposal. You can update this
=\ proposal so you will be logged out and returned to the home page

Below LI

Add Comments to this working group

| M

Figure 3-27. Working Group acceptance of topic.

RCC Object Model Standardization Proposal Process

REVIEW TEAM

Review Team May Accept/Deny Object Model or Request Revisions
YWelcome to the Review Team access page.
¥ou are currently warking with the Proposed Object Model Radar

Please review the documents contained in the Object Model package. You may then decide to Accept or Deny this proposal or
create a Standard Proposal Working Group to consider a revision.

{right-click to download Object Model package)
-+ Radar-TEMA_Radar zip

YOou may:

» ACCept this proposal and send back to DR&CG Chair for processing
» Derny this proposal and send back to DR&CGE Chair for removal
» Create A Standard Proposal ¥yorking Group For Revision

These Working Groups have already been created for this Object Model:
- Review Antenna Class (accepted)

Add comment to this Object Model Proposal:

Submit Comment

Comments submitted for this Object Model:

Comment submitted by Kurt Lessmann on April T6th, 2004, 3:74pm
| think this is a wonderful design!

Figure 3-28. Review Team monitoring working group status.

3-27

DR&CG Chair Creates Review Team

Welcome DRECG Chairl

As the DRECG Chair, you may:

= Create a Review Team for an Object Model below:
+ There are currently no Object Model submissions without a review feam assigned.

= Accept or Deny an Object Model Submission belaw:

|Radar§:{ > |Ac:cept_5

= Wiew @ status list of all submitted Object Models

Figure 3-29. DR&CG Chair acceptance.

3-28

APPENDIX A

METADATA FIELDS

The recommended metadata fields are shown below (Required = *)

Point of Contact (POC) POC Information

O O0O0OO00O0

*Name
*Qrganization
*Mail stop
*Phone number
*Fax number
*Email address:

Object Model (OM) Submission Information
0 OM Submission Package Information

* Submitted Zip file Name
Version number
*Qbject name(s) submitted for standardization
*Purpose of OM - Text
*Range Object(s) defined
*metamodel utilized during development
Re-use of Existing OMs
e EXxisting OM Name
e Submitted OM Name
e Developing Organization
e OM modifications

0 OM Submission Package

Use case file name(s)
e In FI2010 template
e UML Diagrams
Object Model file name(s)
e Graphics file (JPEG, GIF,etc.)
e XMl file — including XMI version number

OM Definition Testing
0 Range event(s) OM supported — Fill out 1 for each event

*Customer
*Date
*Event Description - Text
*Participating Locations - Text
Network and computer configurations - Text
Number of:
e *Range instrumentation/assets
e *live participants — Non instrumentation
e *virtual test applications

A-1

e *Constructive applications

= Number of instances of:
e *Range instrumentation/assets
e *live participants— Non instrumentation
e *virtual participants
e *Constructive participants

= Time duration of event

= Number of test runs

0 General Event Comments
General Submission Comments

A-2

APPENDIX B
FOUNDATION INITIATIVE 2010 USE CASE TEMPLATES

The following Use Case “Worksheets” are provided below as:

Figure B-1 - Test and Training Enabling Architecture (TENA) Use Case basic
information

Figure B-2 - TENA applications

Figure B-3 - Events

Figure B-4 - Information flow

Figure B-5 - Object Model

Figure B-6 - Other relevant information

1.1 TENA Use Case Basic Information

1111 TENAUser Name * 1.1.6 Backaround*

1.1.2 Use Case Name *

1.1.3 Basic/Complex *
1.1.4 Customer

1.1.5 Other Use Cases
Referred to

1.1.7 Use Case Qverview*:

1.1.6 Key Words

£ e reqguired I

Figure B-1. TENA Use Case basic information.

B-1

1.2 TENA Applications
7
oo nbrmetin” ottns | coertvme | oo | 1o L2 | 1oy | 1210
122 123 125 | ystem Ty | oot | s, [t | Notes Pyt .
153 | Application [programming [o 12 | mreading [60K .| name [cpu+ | BAW | CVROS Connectivity Diagram
Language * ol Info* o) Pe
1
2
3
B
5
6
7
8
9
10
1
12
13
14
15
16
17
18
19
20
21
22
23
24
A | B | c D
; 1.3 Basic Course of Even
Aot 13:2 IKE 2 Bpecied Functionality L34
n . cted Funer
, | o Action or Event * ing this Action Process Dingtamn
a| 1
4| 2
s| 3
6 4
7 5
a| &
a| 7
10| 8
11)
12 10
15| 11
14| 12
15 13
16] 14
17| 13
16| 16
19 17
20 18
21 19
22| 20
23| 21
2| 22
25 23
|
27| 25
W _{ v W[\Events £

Figure B-3.

Events Worksheet.

Al B [[O E F G [H 1] W L M a5l
" 1.4 Information Flows
et IS T e L el T Ly L dan L1 14.13
Tt (Hama® | d Inmarduce | Application * | Applicutians * [Ray = | e ||| = Information Flow Diagram
2 Foa Mol 0 (iamuared chart, vpe af chart whewing Infrmatiss Flows)
3 1
4 2
A
5| &
7 5
8 &
a7
w2
1] s
[P
13| 1
14
145
18
17
18

i = |1 i (o e [e [i [[o o oo [o2 (e o |2 [|
i R T R e P AR PR R R R] e -

e
CRON] I E |
A =
1 / *
’ 1.6 Object Model
2
| < | cinterface> I
Controllabl
. o= S:m; Epach is Midnight, January 1, 1970
=1 [+start() : Strng =
+at St
4
— Participant
name String TSPI
5 type . Stiing
= 10 - long
displayColor - long
iconScheme : Stang Duration
B trackLength ; long [Seconds Tong =1
Fnanoseconds . lor
Fay
7
— Weapon burmTime
thrust | double
T
g Plaform Fdiameter | double -y ﬂ,.m
fuel ; double weight | double m
tbestSource Stang| 1§t Weig| e b :
sert Your o
g LE I | ou Lo '
x : double
¥ double
10 2 double
- — originLatitude - double
:;:'Ir!rammgom originLongitude - doubls
i sackingMode String toniginElevation : double
— Frpomt(in azimuth - double, in alliude _ double, mout power - double) - Sinn
- 1. references struct Velocityl TH
| = 0 x © double
SensorTrack THERSCY S Z ::::1\:
113 | 0.1 Targeiange double
tdataQuality - double| 1 1
referances Algorithm - String Btruct Orientation)
l heading - double
pitch - double
roll - double
15
16
v
4« » v} Object Model / < > |

Figure B-5.

Object Model Worksheet.

B-3

1.7 Other Relevant Information as Required - Optional

Note # Note Comment

10

11

12

13

14

15

Figure B-6. Other Information Worksheet.

B-4

APPENDIX C
FI1 2010 TENA USE CASE INSTRUCTIONS

1.1 Introduction

TENA Use Cases are intended to help the TENA Middleware Developer understand the
Range Community’s requirements for creating the TENA Middleware. The TENA Use Case
Template is contained in a series of Excel spreadsheets. This Excel package contains both the
templates for defining a Use Case and for executing the Use Case Evaluation Process. This
section presents the instructions for defining Use Cases such that the maximum amount of
pertinent information is conveyed systematically. Paragraph 1.2 below provides guidance on
completing the evaluation templates as part of the Use Case Evaluation Process.

1.1.1 Requirements Analysis Process. Because the process for analyzing TENA requirements
is very iterative, it is difficult to show cleanly on a diagram. However, Figure C-1 is provided in
an attempt to give the reader a good overview of the process.

JORD
—V\ IKE 2 Developer —} Driving
TCRD Requirements
T Synthesis
\> .
SO0 — Analysis

IKE 2 Developer \ Detailed

Requirements

\J d
Use Cases to

Be Tested
-

Analysis

Formal
Use Cases

Draft Use Cases
(Basic or
Complex)

DTCs

Use Case
Programmatics

DAT, TENA User & IKE 2 Developer

Figure C-1. The Requirements analysis process for the TENA Middleware prototype.

The goal of the current requirements analysis process is to fully understand the
requirements for TENA Middleware. These requirements include the “Driving Requirements”
which are the high level requirements specifying the essence of the system’s purpose. The
requirements also include the “Detailed Requirements” which include a list of all the TENA
Middleware functions as well as all the non-functional requirements imposed on the TENA
Middleware. Another goal is to produce a series of test cases, based on the Use Cases, in which
the TENA Middleware can be tested. Upon receipt of a Draft Use Case, the TENA Development
Advisory Team (DAT) and the TENA Middleware Developer, in consultation with the Use Case
designers (i.e., the potential TENA Users), will refine each Draft into a formal, more structured
Use Case suitable for requirements extraction and the development of the test plan. Both the
TENA User and the TENA Middleware Developer will sign off on the final version of the Use
Case. This formalization process is intended to make sure the TENA Middleware Developer
fully understands what is being presented and that the TENA User agrees with any refinements
made to the Use Case by the TENA Middleware Developer.

C-1

Use Cases can range from the very “Basic,” in that it contains a very small number of
TENA applications performing only a very few functions, to the more “Complex,” containing
more than a few applications, operating over an extensive period of time with a large variety of
information being interchanged. The TENA Middleware development team requires more basic
Use Cases than complex Use Cases. The complex Use Cases should (mostly) be able to be
constructed by combining the basic Use Cases.

1.1.2 Purpose of the Use Cases. There are two main purposes for the development of Use
Cases. The first purpose of the Use Cases is to educate the TENA Middleware development
team on what type of environment exists in the Range Community in which TENA applications
using TENA Middleware will be operating. The two key questions that need to be addressed in a
Use Case are:

a. What types of applications exist on the range?
b. What are the information flows between these applications?

The second purpose of developing Use Cases is to provide the Foundation Initiative 2010
Project Management Office (FIPMO) with information that can be used to test the TENA
Middleware software when it has been developed.

1.1.3 Tips for good stories. In general, there should be a large number of small basic Use
Cases. These can then be combined later into more extensive complex Use Cases that can be
used for testing. The basic Use Cases should:

a. Besmall - involve only two to three systems, with only a few types of information
being exchanged.

b. Be instructive - assume the TENA Middleware development team is not
knowledgeable about range activities.

c. Include processes or problems that are